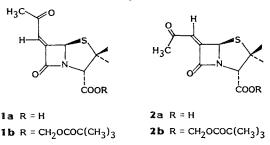
6-(E)-ACETYLMETHYLENEPENICILLANIC ACID, A POTENT β -LACTAMASE INHIBITOR

S. ADAM, R. L. THEN and P. ANGEHRN


Central Research Units, F. Hoffmann-La Roche & Co. Ltd., 4002 Basel, Switzerland

(Received for publication September 5, 1986)

We recently demonstrated that **1a** displays potent and broad activity against β -lactamases^{1,2)}. We have now shown that the geometrical isomer **2a** is likewise a potent β lactamase inhibitor, as is the corresponding pivaloyloxymethyl ester **2b** (Fig. 1). This ester was isolated as a side product in the course of synthesizing **1b**³⁾.

The ester **2b** (220 mg in 1 ml dimethyl sulfoxide) was incubated (0.01 M phosphate buffer, 100 ml) at pH 7 (pH-stat, 0.01 M NaOH) and 25°C for 7 hours in the presence of pig liver esterase. After extraction with diethyl ether, the aqueous phase was acidified (pH 3) at 5°C with citric acid and extracted with ethyl acetate. The resulting organic extract was dried and concentrated at reduced pressure. The acid **2a** (160 mg) could be isolated after salt formation (2 N sodium 2-ethyl caproate in ethyl acetate) as the crystalline sodium salt (150 mg): IR (KBr) cm⁻¹ 1744, 1713, 1664, 1610, 1400; ¹H NMR (270 MHz, D₂O) δ 1.53 and 1.58 (2×s, 2×CCH₃), 2.53 (s, CH₃C=), 4.4 (s, CHCOO), 5.83 (s, 5-CH), 6.43 (s, HC=). Like **1a** and **1b**, **2a** and **2b** show no antibacterial activity. It can be seen from Table 1 that **2a** and **2b** are potent inhibitors of the enzymes tested. Although they are less active than **1a**, their activity is comparable to that of clavulanic acid, and against *Escherichia coli* 1024 β -lactamase even superior to that of

Fig. 1.

			IC ₅₀ (µм) f	for the β -lact	amase				
Compound	Proteus 102		Klebsiella p NCTO	oneumoniae C 418	Escheric 102		Escheric TEN		
-	-E	+E	E	+E	—E	+E	—E	+E	
1b	0.16	0.015	0.19	0.001	32	1.5	0.02		
1a	0.004		0.005		1.7		0.0007		
Clavulanic acid	0.03		0.02		85		0.04		
2b	1.2	0.07	0.45	0.017	25	1.8	0.85	0.041	
2a	0.048		0.024		3.6		0.0083		

Table 1. Inhibitory properties for isolated β -lactamases.

E: Test carried out in the presence of 10 μ l of hog liver esterase.

Table 2. In vitro synergy with ampicillin against β -lactamase-producing isolates.

	MIC (µg/ml) inhibitor+ampicillin ^a						
Compound	Staphylococcus aureus 887	Escherichia coli TEM 1	Klebsiella pneumoniae NCTC 418	Proteus vulgaris 1028			
1a	1.6+3.1	6.3+12.5	0.8+6.3	1.6+3.1			
2a	3.1+6.3	12.5 + 12.5	0.8+6.3	3.1 + 3.1			

^a Figures presented were selected on the basis of minimal total drug concentration required for inhibition. MICs of inhibitors or ampicillin alone were in all instances greater than 50 μ g/ml.

Method: Checkerboard titration.

Medium: Mueller-Hinton broth (Difco).

Inoculum: 10⁵ cfu/ml (S. aureus, 10⁶ cfu/ml).

	Staphylococcus aureus 887	Proteus vulgaris 1028	
A+1b	12+12	>25+25	
A+2b	25+25	>25+25	
Α	>25	>25	

Table 3. Therapeutic activity in combination with ampicillin (A) against experimental septicemias in mice (ED₋₀ mg/kg)

Compounds administered subcutaneously 1 and 3 hour(s) after infection.

clavulanic acid. These compounds are also active against several β -lactamase-producing ampicillin-resistant organisms when tested in combination with ampicillin. The in vitro and in vivo properties of the test compounds are shown in Tables 2 and 3.

These results reinforce our proposal that the ketone is actively involved during the inactivation of β -lactamases⁴⁾.

References

- 1) ARISAWA, M. & R. L. THEN: 6-Acetylmethylenepenicillanic acid (Ro 15-1903), a potent β lactamase inhibitor. I. Inhibition of chromosomally and R-factor-mediated β -lactamases. J. Antibiotics 35: 1578~1583, 1982
- 2) ANGEHRN, P. & M. ARISAWA: 6-Acetylmethylenepenicillanic acid (Ro 15-1903), a potent β lactamase inhibitor. II. Antibacterial properties. J. Antibiotics 35: 1584~1589, 1982
- 3) ADAM, S.; W. ARNOLD & P. SCHÖNHOLZER: Sulfoxides of penicillanates with non classical substituents in the 6-position. Tetrahedron 39: 2485~2491, 1983
- 4) ARISAWA, M. & S. ADAM: Mechanism of inactivation of TEM-1 β -lactamase by 6-acetylmethylenepenicillanic acid. Biochem. J. 211: 447~454, 1983